Growing partially directed self-avoiding walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 18 L63
(http://iopscience.iop.org/0305-4470/18/2/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 17:06

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Growing partially directed self-avoiding walks

V Privman
Department of Physics, 405-47 California Institute of Technology, Pasadena, CA 91125, USA

Received 22 October 1984

Abstract

A partially directed self-avoiding walk model with the 'kinetic growth' weighting is solved exactly, on the square lattice and for two restricted, strip geometries. Some finite-size effects are examined.

Recently various 'kinetically' growing walk models have been proposed (Amit et al 1983, Hemmer and Hemmer 1984, Majid et al 1984, Kremer and Lyklema 1984a,b, Weinrib and Trugman 1984) as part of a general study of dynamic aggregation (see Family and Landau 1984, for the literature). In this letter we consider the partially directed self-avoiding walk (SAW) on the square lattice, with allowed steps along $+\hat{x}$, $-\hat{x}$ and $+\hat{y}$. The usual 'configurational' versions of several directed saw models are exactly solvable (Fisher and Sykes 1959, Blöte and Hilhorst 1983, Cardy 1983, Redner and Majid 1983, Szpilka 1983), and the partially directed saw exhibit peculiar finite-size effects (Szpilka and Privman 1983). In the growing-walk version, each step of the walk is weighted with the probability factor which is the inverse of the number of all allowed steps (number of unvisited allowed sites) before the step under consideration was actually done. The total weight, W, of a given n-step walk is a product of n consecutive step probabilities. All walks begin at the origin, and for convenience we will allow for a zero-step walk with $W=1$.

One important property of all the growth models is that the walk should never be trapped. The directed saw never gets trapped locally. However, the above condition prevents defining a proper growth model for directed saws on finite lattices. We will consider finite-width strips which are infinite in one lattice direction. Another consequence of the non-trapping property (Nakanishi and Family 1984, see also Gould et al 1983) is that the 'susceptibility', $\chi(z)$, takes a simple form

$$
\begin{equation*}
\chi(z) \equiv \sum_{n=0}^{\infty} \sum_{|w|=n} W(w) z^{n}=1 /(1-z) \tag{1}
\end{equation*}
$$

so that $z_{\mathrm{c}}=1$. Here the inner sum runs over all the allowed walks, w, of n steps $(|w|=n)$. To every n-step walk the activity factor z^{n} is assigned in (1).

If we considered the fully directed walks, with only $+\hat{x}$ and $+\hat{y}$ steps allowed, then the difference between the configurational versus 'kinetic' description would be trivial, the latter being obtained by replacing $z^{(\text {conf. })} \rightarrow \frac{1}{2} z^{(\text {growth })}$ in all the quantities of interest. In particular, $z_{c}^{\text {(conf) }}=\frac{1}{2}$ goes over to $z_{c}^{\text {(growth })}=1$. The exponents describing the divergence of, say, $\xi_{\|}(z)$ and $\xi_{\perp}(z)$ as $z \rightarrow z_{c}^{-}$remain unchanged ($\nu_{\|}=1$ and $\nu_{\perp}=\frac{1}{2}$). By universality we then expect the bulk critical behaviour of the partially directed sAw
model to remain unchanged by making it 'kinetic'. However, the behaviour away from z_{c} is modified non-trivially, see below (recall, $z_{\mathrm{c}}^{(\text {conf.) }}=\sqrt{2}-1$), and even more dramatic changes are found in certain finite-size scaling properties.

As usual (see e.g. Szpilka 1983) we introduce the generating function

$$
\begin{equation*}
G\left(x_{1}, x_{2}, y\right)=\sum_{n=0}^{\infty} \sum_{|w|=n} W(w) x_{1}^{n+} x_{2}^{n}-y^{n-n_{+}-n_{-}}, \tag{2}
\end{equation*}
$$

where n_{+}and n_{-}denote the number of $+\hat{x}$ and $-\hat{x}$ steps, respectively, in the n-step walk. Then $G(z, z, z) \equiv \chi(z)=(1-z)^{-1}$ which provides a consistency check. The quantities which play the role of the correlation lengths for this problem can be defined via

$$
\begin{align*}
& \xi_{\|}(z)=\chi^{-1}(z) \sum_{n=0}^{\infty} \sum_{|w|=n} W(w) Y(w) z^{n} \tag{3}\\
& \xi_{\perp}^{2}(z)=\chi^{-1}(z) \sum_{n=0}^{\infty} \sum_{|w|=n} W(w) X^{2}(w) z^{n} \tag{4}
\end{align*}
$$

where (X, Y) are the end-point coordinates, and for ξ_{\perp} the quadratic moment is used because the linear one vanishes by symmetry.

Then

$$
\begin{gather*}
\xi_{\|}(z)=z\left[(\partial / \partial y) \ln G\left(x_{1}, x_{2}, y\right)\right]_{x_{1}, x_{2}, y \rightarrow z}, \tag{5}\\
\xi_{\perp}^{2}(z)=z^{2} \chi^{-1}(z)\left[\left(\partial / \partial x_{1}-\partial / \partial x_{2}\right)^{2} G\left(x_{1}, x_{2}, y\right)\right]_{x_{1}, x_{2}, y \rightarrow z} \\
+2 z\left[\left(\partial / \partial x_{1}\right) \ln G\left(x_{1}, x_{2}, y\right)\right]_{\dot{x}_{1}, x_{2}, y \rightarrow z} . \tag{6}
\end{gather*}
$$

We will consider two finite-width strip geometries: (a) walk restricted to $0 \leqslant x \leqslant L_{\perp}$ (and $0 \leqslant y<\infty$) with periodic boundary conditions, namely the $+\hat{x}$ step from (L_{\perp}, y) reaches the point $(0, y)$, while $(0, y) \rightarrow\left(L_{\perp}, y\right)$ is a $-\hat{x}$ step. (b) Walk restricted to $0 \leqslant y \leqslant L_{\|}$(and $-\infty<x<\infty$) with open boundary at $y=L_{\|}$, so that the walk which reaches ($x, L_{\|}$) can proceed only by $+\hat{x}$ steps or by $-\hat{x}$ steps.

Let us consider first the geometry (a). The infinite square lattice results will obtain as $L \rightarrow \infty$ (we write L in place of L_{\perp}, for simplicity). The generating function for walks which do not make $+\hat{y}$ steps is given by

$$
\begin{equation*}
G^{(x)}=1+\left(\frac{x_{1}}{3}+\frac{x_{1}^{2}}{3 \cdot 2}+\frac{x_{1}^{3}}{3 \cdot 2^{2}}+\ldots+\frac{x_{1}^{L}}{3 \cdot 2^{L-1}}\right)+\left(x_{1} \rightarrow x_{2}\right) \tag{7}
\end{equation*}
$$

where the terms are self-explanatory: the probability factors for ($n>0$)-step walks are $\frac{1}{2}$ per step (two neighbours) except for the first step, when three allowed neighbours are unoccupied. The generating function for walks which make exactly one $+\hat{y}$ step: their last step, is given by

$$
\begin{equation*}
G^{(y)}=\frac{y}{3}+\left(\frac{x_{1}}{3} \cdot \frac{y}{2}+\frac{x_{1}^{2}}{3 \cdot 2} \cdot \frac{y}{2}+\frac{x_{1}^{3}}{3 \cdot 2^{2}} \cdot \frac{y}{2}+\ldots+\frac{x_{1}^{L}}{3 \cdot 2^{L-1}} \cdot y\right)+\left(x_{1} \rightarrow x_{2}\right), \tag{8}
\end{equation*}
$$

where only the last, $\sim x_{1}^{L}$, term has a factor of y, in place of $y / 2$. In terms of $G^{(x)}$ and $G^{(y)}$ we have

$$
\begin{equation*}
G=G^{(x)}+G^{(y)} G^{(x)}+G^{(y)^{2}} G^{(x)}+\ldots=G^{(x)} /\left(1-G^{(y)}\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& G^{(x)}=\frac{2}{3}\left(\frac{1-\left(x_{1} / 2\right)^{L+1}}{1-\left(x_{1} / 2\right)}+\frac{1-\left(x_{2} / 2\right)^{L+1}}{1-\left(x_{2} / 2\right)}-\frac{1}{2}\right) \tag{10}\\
& G^{(y)}=\frac{y}{3}\left(\frac{1-\left(x_{1} / 2\right)^{L+1}}{1-\left(x_{1} / 2\right)}+\frac{1-\left(x_{2} / 2\right)^{L+1}}{1-\left(x_{2} / 2\right)}+\left(\frac{x_{1}}{2}\right)^{L}+\left(\frac{x_{2}}{2}\right)^{L}-1\right) . \tag{11}
\end{align*}
$$

For the bulk system ($L \rightarrow \infty$) one then calculates (see (5) and (6))

$$
\begin{align*}
& \xi_{\|}(z ; L=\infty)=\frac{z(2+z)}{(1-z)(6+z)} \approx \frac{\text { constant }}{1-z}, \quad \text { as } z \rightarrow z_{c}^{-}, \tag{12}\\
& \xi_{\perp}^{2}(z ; L=\infty)=\frac{2 z\left(z^{2}+2 z+4\right)}{(1-z)(6+z)(2-z)} \approx \frac{\text { constant }}{1-z}, \quad \text { as } z \rightarrow z_{c}^{-}, \tag{13}
\end{align*}
$$

where $z_{\mathrm{c}}=1$. Thus $\nu_{\|}=1$ and $2 \nu_{\perp}=1$ as anticipated. For finite $L \equiv L_{\perp}$,

$$
\begin{equation*}
\xi_{\|}\left(z ; L_{\perp}\right)=\frac{z\left[2+z+4(z / 2)^{L}-8(z / 2)^{L+1}\right]}{(1-z)\left[6+z-8(z / 2)^{L+1}\right]} . \tag{14}
\end{equation*}
$$

We found that the closed-form calculation of $\xi_{\perp}^{2}(z ; L<\infty)$ is intractably complicated. Therefore, we will examine the finite-size behaviour of $\xi_{\|}(z ; L)$ only, both here and for the geometry (b). We observe that $\xi_{\|}\left(z ; L_{\perp}\right)$ diverges at the bulk critical point, at $z=1$. One finds

$$
\begin{equation*}
\xi_{\|}\left(z ; L_{\perp}\right) / \xi_{\|}(z ; \infty)=1+\mathrm{O}\left(z_{\mathrm{c}}-z\right)+\mathrm{O}\left(2^{-L_{\perp}}\right) \tag{15}
\end{equation*}
$$

so that the finite-size effects enter only in corrections to scaling! Indeed, the standard finite-size scaling hypothesis for ξ_{\sharp}, in this geometry, reads

$$
\begin{equation*}
\xi_{\|}\left(z ; L_{\perp}\right) / \xi_{\|}(z ; \infty) \approx Y^{(A)}\left(L_{\perp} / \xi_{\perp}(z ; \infty)\right), \quad \text { as } z \rightarrow z_{\mathrm{c}}^{-}, \tag{16}
\end{equation*}
$$

see Fisher (1971), Fisher and Barber (1972), and a review by Barber (1983). For the configurational version of this problem, one finds instead of $L_{\perp} / \xi_{\perp}(z ; \infty)$, a different, anomalous scaling combination in which L_{\perp} enters through a new, exponential (in L_{\perp}) longitudinal length scale which 'scales' with $\xi_{\|}(z ; \infty)$, see Szpilka and Privman (1983), for details. In the 'kinetic' case, relation (15) suggests $Y^{(A)} \equiv 1$, so that the scaling argument remains undetermined. More generally, however, one may expect no anomalous length scale entering because it is normally related to the value of $\xi_{\|}\left(z ; L_{\perp}\right)$ at the bulk z_{c} (Privman and Fisher 1983). This value, $\xi_{\|}\left(z_{\mathrm{c}} ; L_{\perp}\right)$, is infinite in the 'kinetic' model.

Consider next the geometry (b) where the walk is allowed to make no more than $L_{\|}$steps along $+\hat{y}$. Relation (9) is replaced by

$$
\begin{align*}
G=\left(G^{(x)}+\right. & \left.G^{(y)} G^{(x)}+G^{(y)^{2}} G^{(x)}+\ldots+G^{(y)^{L_{\|}-1}} G^{(x)}\right)+G^{(y) L_{\|}} \bar{G}^{(x)} \\
& =G^{(x)}\left(1-G^{(y)^{L_{1}}}\right) /\left(1-G^{(y)}\right)+\bar{G}^{(x)} G^{(y)^{L_{1}}}, \tag{17}
\end{align*}
$$

where $G^{(x)}$ and $G^{(y)}$ are with $L \rightarrow \infty$ in (10)-(11), while $\bar{G}^{(x)}$ is the generating function for walking at $y=L_{\|}$, given by

$$
\begin{align*}
\bar{G}^{(x)} & =1+\left(\frac{x_{1}}{2}+\frac{x_{1}}{2} x_{1}+\frac{x_{1}}{2} x_{1}^{2}+\ldots\right)+\left(x_{1} \rightarrow x_{2}\right) \\
& =\frac{1}{2}\left(\frac{1}{1-x_{1}}+\frac{1}{1-x_{2}}\right) . \tag{18}
\end{align*}
$$

For $\xi_{\|}\left(z ; L_{\|}\right)$we obtain, by (5),

$$
\begin{equation*}
\xi_{\|}\left(z ; L_{\|}\right)=\xi_{\|}(z ; \infty)\left[1-\left(\frac{z(2+z)}{3(2-z)}\right)^{L_{\|}-1}\right], \tag{19}
\end{equation*}
$$

where $\xi_{\|}(z ; \infty)$ is given by (12). As $z \rightarrow z_{\mathrm{c}}^{-}$and $L_{\|} \rightarrow \infty$, we anticipate, in place of (16),

$$
\begin{equation*}
\xi_{\|}\left(z ; L_{\|}\right) / \xi_{\|}(z ; \infty) \approx Y^{(B)}\left(L_{\|} / \xi_{\|}(z ; \infty)\right) \tag{20}
\end{equation*}
$$

A straightforward analysis of (19) verifies this relation with

$$
\begin{equation*}
Y^{(B)}(\tau)=1-\mathrm{e}^{-\tau} . \tag{21}
\end{equation*}
$$

At the bulk z_{c},

$$
\begin{equation*}
\xi_{\|}\left(z_{c} ; L\right) \approx L \tag{22}
\end{equation*}
$$

so that asymptotically $\xi_{\|}$attains its largest possible value for this geometry.
Instructive discussions with F Family, M E Fisher and H E Stanley are greatly appreciated. The author acknowledges the award of a Bantrell Fellowship at the California Institute of Technology. He has also enjoyed the warm hospitality of the Polymer Science Center at Boston University, where his interest in the subject was stimulated.

References

Amit D J, Parisi G and Peliti L 1983 Phys. Rev. B 271635
Barber M N 1983 in Phase Transitions and Critical Phenomena vol 8, ed C Domb and J L Lebowitz (London: Academic) p 2
Blöte H W J and Hilhorst H J 1983 J. Phys. A: Math. Gen. 163687
Cardy J L 1983 J. Phys. A: Math. Gen. 16 L355
Family F and Landau D P 1984 Proc. Int. Conf. Kinetics of Aggregation and Gelation (Amsterdam: North-Holland)
Fisher M E 1971 in Critical Phenomena, Int. School Phys. 'Enrico Fermi', vol 51, ed M S Green (New York: Academic) p 1
Fisher M E and Barber M N 1972 Phys. Rev. Lett. 281516
Fisher M E and Sykes M F 1959 Phys. Rev. 11445
Gould H, Family F and Stanley H E 1983 Phys. Rev. Lett. 50686
Hemmer S and Hemmer P C 1984 J. Chem. Phys. 81584
Kremer K and Lyklema J W 1984a J. Phys. A: Math. Gen. 17 L691
—— 1984b KFA (Jülich) preprint
Majid I, Jan N, Coniglio A and Stanley H E 1984 Phys. Rev. Lett. 521257
Nakanishi H and Family F 1984 J. Phys. A: Math. Gen. 17427
Privman V and Fisher M E 1983 J. Stat. Phys. 33385
Redner S and Majid I 1983 J. Phys. A: Math. Gen. 16 L307
Szpilka A M 1983 J. Phys. A: Math. Gen. 162883
Szpilka A M and Privman V 1983 Phys. Rev. B 286613
Weinrib A and Trugman S 1984 Cornell preprint

