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LETTER TO THE EDITOR 

Growing partially directed self-avoiding walks 

V Privman 
Department of Physics, 405-47 California Institute of Technology, Pasadena, CA 91 125, 
USA 

Received 22 October 1984 

Abstract. A partially directed self-avoiding walk model with the 'kinetic growth' weighting 
is solved exactly, on the square lattice and for two restricted, strip geometries. Some 
finite-size effects are examined. 

Recently various 'kinetically' growing walk models have been proposed (Amit et a1 
1983, Hemmer and Hemmer 1984, Majid er al 1984, Kremer and Lyklema 1984a,b, 
Weinrib and Trugman 1984) as part of a general study of dynamic aggregation (see 
Family and Landau 1984, for the literature). In this letter we consider the partially 
directed self-avoiding walk (SAW) on the square lattice, with allowed steps along +i, 
-2 and +?. The usual 'configurational' versions of several directed SAW models are 
exactly solvable (Fisher and Sykes 1959, Blote and Hilhorst 1983, Cardy 1983, Redner 
and Majid 1983, Szpilka 1983), and the partially directed SAW exhibit peculiar finite-size 
effects (Szpilka and Privman 1983). In the growing-walk version, each step of the walk 
is weighted with the probability factor which is the inverse of the number of all allowed 
steps (number of unvisited allowed sites) before the step under consideration was 
actually done. The total weight, W, of a given n-step walk is a product of n consecutive 
step probabilities. All walks begin at the origin, and for convenience we will allow 
for a zero-step walk with W = 1. 

One important property of all the growth models is that the walk should never be 
trapped. The directed SAW never gets trapped locally. However, the above condition 
prevents defining a proper growth model for directed SAWS on finite lattices. We will 
consider finite-width strips which are infinite in one lattice direction. Another con- 
sequence of the non-trapping property (Nakanishi and Family 1984, see also Gould 
et al 1983) is that the 'susceptibility', ~ ( z ) ,  takes a simple form 

00 

/y(z)= 1 W(w)r"= l / ( l - z ) ,  
n = O  J w l = n  

so that z, = 1. Here the inner sum runs over all the allowed walks, w, of n steps 
( Iwl=  n) .  To every n-step walk the activity factor Z" is assigned in (1) .  

If we considered the fully directed walks, with only +i and +y* steps allowed, then 
the difference between the configurational versus 'kinetic' description would be trivial, 
the latter being obtained by replacing Z ( ~ O " ' , )  +$z(growth) in all the quantities of interest. 
In particular, z?"') = 4 goes over to z P w t h f  = 1. The exponents describing the diver- 
gence of, say, t I1(z)  and tl(z) as z + z; remain unchanged ( vII = 1 and vI = ;). By 
universality we then expect the bulk critical behaviour of the partially directed SAW 
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model to remain unchanged by making it 'kinetic'. However, the behaviour away from 
z, is modified non-trivially, see below (recall, zYnf.)  =A- I ) ,  and even more dramatic 
changes are found in certain finite-size scaling properties. 

As usual (see e.g. Szpilka 1983) we introduce the generating function 

m 

G(x, ,  x2, y )  = c 1 W (  w ) x ; + x ; - ~ " - " + - ~ - ,  
n = O  Iwl=n 

where n, and n- denote the number of +E and -E steps, respectively, in the n-step 
walk. Then G(z, z, z )  = x ( z )  = ( 1  - z ) - '  which provides a consistency check. The 
quantities which play the role of the correlation lengths for this problem can be defined 
via 

m 

where ( X ,  Y )  are the end-point coordinates, and for 6 ,  the quadratic moment is used 
because the linear one vanishes by symmetry. 

Then 

+ 2 z [ @ / W  In G(xl, x2, Y ) I ; , . ~ ~ . ~ + ~ .  ( 6 )  

We will consider two finite-width strip geometries: (a) walk restricted to 0 s  x s L,  
(and O S  y < CO) with periodic boundary conditions, namely the +2 step from (L,, y )  
reaches the point ( O , y ) ,  while ( O , y ) + ( L , , y )  is a -E step. (b) Walk restricted to 
O G y a  LII (and - C O < X < C O )  with open boundary at y = LII, so that the walk which 
reaches ( x ,  L, , )  can proceed only by +E steps or by -E steps. 

Let us consider first the geometry (a). The infinite square lattice results will obtain 
as L+ CO (we write L in place of L,, for simplicity). The generating function for walks 
which do not make +? steps is given by 

where the terms are self-explanatory: the probability factors for ( n  > 0)-step walks are 
f per step (two neighbours) except for the first step, when three allowed neighbours 
are unoccupied. The generating function for walks which make exactly one +y^ step: 
their lust step, is given by 
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where 
1 - (x1/2)L+' 1 - (X2/2IL+' 

l-(X1/2) + l - ( X 2 / 2 )  -!) 2 

For the bulk system (L+co)  one then calculates (see (5) and ( 6 ) )  

z(2 + z) constant 

2z(z2+2z+4) constant 

t l l(z; L=CO)= , as z+z,, 

&z;L=CO)= , as z+z;, 

( l - z ) ( 6 + z ) =  1 - z  

( l - z ) (6+z ) (2 -z )=  1 - z  
(13) 

where z, = 1. Thus vll = 1 and 2v, = 1 as anticipated. For finite L = L,, 

~ [ 2 +  z + 4 ( ~ / 2 ) ~  - 8 ( ~ / 2 ) ~ + ' ]  
( 1  - ~ ) [ 6 +  z - 8 ( ~ / 2 ) ~ + ' ]  

' 511k L,) = 

We found that the closed-form calculation of ,$:(z; L <  CO) is intractably complicated. 
Therefore, we will examine the finite-size behaviour of 511( z ; L )  only, both here and 
for the geometry (b). We observe that %ll(z; L,) diverges at the bulk critical point, at 
z = 1. One finds 

511(z; L,)/511(z; CO) = 1 +o(z, -z)+o(2-L~) ,  (15) 

so that the finite-size effects enter only in corrections to scaling! Indeed, the standard 
finite-size scaling hypothesis for til, in this geometry, reads 

&(z; L,)/511(z; CO) = Y'A'(L,/S,(z; CO)) ,  as z + z;, (16) 

see Fisher (1971), Fisher and Barber (1972), and a review by Barber (1983). For the 
configurational version of this problem, one finds instead of L,/t,(z; CO), a different, 
anomalous scaling combination in which L ,  enters through a new, exponential (in 
L,) longitudinal length scale which 'scales' with &(z; a), see Szpilka and Privman 
(1983), for details. In the 'kinetic' case, relation (15) suggests Y ( A ) =  1, so that the 
scaling argument remains undetermined. More generally, however, one may expect 
no anomalous length scale entering because it is normally related to the value of 
.$(z; L,) at the bulk z,  (Privman and Fisher 1983). This value, 511(zc; L,), is injnite 
in the 'kinetic' model. 

Consider next the geometry (b) where the walk is allowed to make no more than 
LII steps along + j .  Relation (9) is replaced by 
G = (G(x)+ G(Y)G(x)+  G(Y)'G(x)+ . . .  + G(Y)'II-'G(x)) + G(Y)'IIG(X) 

- - G(X)( 1 - G(Y)'II)/( 1 - G(Y))+ G(x)G(Y)'!I , (17) 

is the generating function where G(X) and G ( y )  are with L +  CO in (lo)-( 1 l), while 
for walking at y = Lil, given by 

C'"'= I +  -+ --Ix,+-x,+ . . .  'C(Xl+X2) ex2 2 1 
= 1 (-+ 1 L). 

2 1-x, 1-x, 
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For t l1(z; LII) we obtain, by ( 5 ) ,  

where el1( z; Q)) is given by (12). As z + z, and LII +CO, we anticipate, in place of (16), 

511(z; ~ l l ) / 5 l ~ k  a) = y‘B’(LII/s,I(z; 03)). (20) 

yCB)( 7) = 1 - e-I. (21) 

511(zc; L )  = L (22) 

A straightforward analysis of ( 19) verifies this relation with 

At the bulk zc, 

so that asymptotically attains its largest possible value for this geometry. 

Instructive discussions with F Family, M E Fisher and H E Stanley are greatly 
appreciated. The author acknowledges the award of a Bantrell Fellowship at the 
California Institute of Technology. He has also enjoyed the warm hospitality of the 
Polymer Science Center at Boston University, where his interest in the subject was 
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